direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C22×D20, C20⋊2C23, D10⋊1C23, C10.3C24, C23.35D10, (C2×C10)⋊6D4, C10⋊1(C2×D4), (C2×C4)⋊9D10, C5⋊1(C22×D4), C4⋊2(C22×D5), (C22×C4)⋊5D5, (C22×C20)⋊7C2, (C23×D5)⋊3C2, C2.4(C23×D5), (C2×C20)⋊12C22, (C2×C10).64C23, (C22×D5)⋊5C22, C22.30(C22×D5), (C22×C10).45C22, SmallGroup(160,215)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C22×D20
G = < a,b,c,d | a2=b2=c20=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 840 in 236 conjugacy classes, 105 normal (9 characteristic)
C1, C2, C2, C2, C4, C22, C22, C5, C2×C4, D4, C23, C23, D5, C10, C10, C22×C4, C2×D4, C24, C20, D10, D10, C2×C10, C22×D4, D20, C2×C20, C22×D5, C22×D5, C22×C10, C2×D20, C22×C20, C23×D5, C22×D20
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C22×D4, D20, C22×D5, C2×D20, C23×D5, C22×D20
(1 69)(2 70)(3 71)(4 72)(5 73)(6 74)(7 75)(8 76)(9 77)(10 78)(11 79)(12 80)(13 61)(14 62)(15 63)(16 64)(17 65)(18 66)(19 67)(20 68)(21 53)(22 54)(23 55)(24 56)(25 57)(26 58)(27 59)(28 60)(29 41)(30 42)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)(37 49)(38 50)(39 51)(40 52)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 77)(42 78)(43 79)(44 80)(45 61)(46 62)(47 63)(48 64)(49 65)(50 66)(51 67)(52 68)(53 69)(54 70)(55 71)(56 72)(57 73)(58 74)(59 75)(60 76)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 63)(2 62)(3 61)(4 80)(5 79)(6 78)(7 77)(8 76)(9 75)(10 74)(11 73)(12 72)(13 71)(14 70)(15 69)(16 68)(17 67)(18 66)(19 65)(20 64)(21 47)(22 46)(23 45)(24 44)(25 43)(26 42)(27 41)(28 60)(29 59)(30 58)(31 57)(32 56)(33 55)(34 54)(35 53)(36 52)(37 51)(38 50)(39 49)(40 48)
G:=sub<Sym(80)| (1,69)(2,70)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,77)(10,78)(11,79)(12,80)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,51)(40,52), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,77)(42,78)(43,79)(44,80)(45,61)(46,62)(47,63)(48,64)(49,65)(50,66)(51,67)(52,68)(53,69)(54,70)(55,71)(56,72)(57,73)(58,74)(59,75)(60,76), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,63)(2,62)(3,61)(4,80)(5,79)(6,78)(7,77)(8,76)(9,75)(10,74)(11,73)(12,72)(13,71)(14,70)(15,69)(16,68)(17,67)(18,66)(19,65)(20,64)(21,47)(22,46)(23,45)(24,44)(25,43)(26,42)(27,41)(28,60)(29,59)(30,58)(31,57)(32,56)(33,55)(34,54)(35,53)(36,52)(37,51)(38,50)(39,49)(40,48)>;
G:=Group( (1,69)(2,70)(3,71)(4,72)(5,73)(6,74)(7,75)(8,76)(9,77)(10,78)(11,79)(12,80)(13,61)(14,62)(15,63)(16,64)(17,65)(18,66)(19,67)(20,68)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,51)(40,52), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,77)(42,78)(43,79)(44,80)(45,61)(46,62)(47,63)(48,64)(49,65)(50,66)(51,67)(52,68)(53,69)(54,70)(55,71)(56,72)(57,73)(58,74)(59,75)(60,76), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,63)(2,62)(3,61)(4,80)(5,79)(6,78)(7,77)(8,76)(9,75)(10,74)(11,73)(12,72)(13,71)(14,70)(15,69)(16,68)(17,67)(18,66)(19,65)(20,64)(21,47)(22,46)(23,45)(24,44)(25,43)(26,42)(27,41)(28,60)(29,59)(30,58)(31,57)(32,56)(33,55)(34,54)(35,53)(36,52)(37,51)(38,50)(39,49)(40,48) );
G=PermutationGroup([[(1,69),(2,70),(3,71),(4,72),(5,73),(6,74),(7,75),(8,76),(9,77),(10,78),(11,79),(12,80),(13,61),(14,62),(15,63),(16,64),(17,65),(18,66),(19,67),(20,68),(21,53),(22,54),(23,55),(24,56),(25,57),(26,58),(27,59),(28,60),(29,41),(30,42),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48),(37,49),(38,50),(39,51),(40,52)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,77),(42,78),(43,79),(44,80),(45,61),(46,62),(47,63),(48,64),(49,65),(50,66),(51,67),(52,68),(53,69),(54,70),(55,71),(56,72),(57,73),(58,74),(59,75),(60,76)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,63),(2,62),(3,61),(4,80),(5,79),(6,78),(7,77),(8,76),(9,75),(10,74),(11,73),(12,72),(13,71),(14,70),(15,69),(16,68),(17,67),(18,66),(19,65),(20,64),(21,47),(22,46),(23,45),(24,44),(25,43),(26,42),(27,41),(28,60),(29,59),(30,58),(31,57),(32,56),(33,55),(34,54),(35,53),(36,52),(37,51),(38,50),(39,49),(40,48)]])
C22×D20 is a maximal subgroup of
(C2×C4)⋊9D20 (C2×C20)⋊5D4 (C2×Dic5)⋊3D4 D20.31D4 D20⋊13D4 (C2×C4)⋊6D20 C23⋊2D20 (C2×D20)⋊22C4 (C2×C4)⋊3D20 C4⋊C4⋊36D10 D20⋊16D4 D20.36D4 C23.48D20 C42⋊7D10 C42⋊9D10 D20⋊23D4 D20⋊19D4 D20⋊21D4 C10.1202+ 1+4 C10.1462+ 1+4 C22×D4×D5
C22×D20 is a maximal quotient of
C42.276D10 C23⋊3D20 C10.2+ 1+4 C42⋊8D10 C42⋊9D10 C42.92D10 D4⋊5D20 D4⋊6D20 Q8⋊5D20 Q8⋊6D20 C40.9C23 D4.11D20 D4.12D20 D4.13D20
52 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 4A | 4B | 4C | 4D | 5A | 5B | 10A | ··· | 10N | 20A | ··· | 20P |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 10 | ··· | 10 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
52 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | D4 | D5 | D10 | D10 | D20 |
kernel | C22×D20 | C2×D20 | C22×C20 | C23×D5 | C2×C10 | C22×C4 | C2×C4 | C23 | C22 |
# reps | 1 | 12 | 1 | 2 | 4 | 2 | 12 | 2 | 16 |
Matrix representation of C22×D20 ►in GL4(𝔽41) generated by
1 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 32 | 30 |
0 | 0 | 11 | 27 |
40 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 40 |
0 | 0 | 40 | 0 |
G:=sub<GL(4,GF(41))| [1,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[40,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,40,0,0,0,0,32,11,0,0,30,27],[40,0,0,0,0,1,0,0,0,0,0,40,0,0,40,0] >;
C22×D20 in GAP, Magma, Sage, TeX
C_2^2\times D_{20}
% in TeX
G:=Group("C2^2xD20");
// GroupNames label
G:=SmallGroup(160,215);
// by ID
G=gap.SmallGroup(160,215);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,579,69,4613]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^20=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations